Effects of Arctic sea ice in autumn on extreme cold events over the Tibetan Plateau in the following winter: possible mechanisms

Author:

Bi Miao,Li QingquanORCID,Yang Song,Guo Dong,Shen Xinyong,Sun Xiaoting

Abstract

AbstractExtreme cold events (ECEs) on the Tibetan Plateau (TP) exert serious impacts on agriculture and animal husbandry and are important drivers of ecological and environmental changes. We investigate the temporal and spatial characteristics of the ECEs on the TP and the possible effects of Arctic sea ice. The daily observed minimum air temperature at 73 meteorological stations on the TP during 1980–2018 and the BCC_AGCM3_MR model are used. Our results show that the main mode of winter ECEs over the TP exhibits the same spatial variation and interannual variability across the whole region and is affected by two wave trains originating from the Arctic. The southern wave train is controlled by the sea ice in the Beaufort Sea. It initiates in the Norwegian Sea, and then passes through the North Atlantic Ocean, the Arabian Sea, and the Bay of Bengal along the subtropical westerly jet stream. It enters the TP from the south and brings warm, humid air from the oceans. By contrast, the northern wave train is controlled by the sea ice in the Laptev Sea. It originates from the Barents and Kara seas, passes through Lake Baikal, and enters the TP from the north, bringing dry and cold air. A decrease in the sea ice in the Beaufort Sea causes positive potential height anomalies in the Arctic. This change enhances the pressure gradient between the Artic and the mid-latitudes, leading to westerly winds in the northern TP, which block the intrusion of cold air into the south. By contrast, a decrease in the sea ice in the Laptev Sea causes negative potential height anomalies in the Artic. This change reduces the pressure gradient between the Artic and the mid-latitudes, leading to easterly winds to the north of the TP, which favors the southward intrusion of cold polar air. A continuous decrease in the amount of sea ice in the Beaufort Sea would reduce the frequency of ECEs over the TP and further aggravate TP warming in winter.

Funder

the National Natural Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

the Second Tibetan Plateau Scientific Expedition and Research Program of China

the National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Major Project of Basic and Applied Basic Research

Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3