Mechanisms for African easterly wave changes in simulations of the mid-Holocene

Author:

Bian Jianpu,Räisänen Jouni,Zhang Qiong

Abstract

AbstractThe mid-Holocene was a warm period with significantly amplified precipitation in North Africa, and a northward shifted Western African Monsoon during boreal summer. We conduct simulations for the pre-industrial and mid-Holocene periods to investigate the connection between summer rainfall variability and changes of African easterly waves (AEWs) during the mid-Holocene. Summer rainfall increases and migrates northward during the mid-Holocene, but the magnitude of change fails to reconcile the discrepancy with mid-Holocene proxy evidence, possibly due to no prescribed vegetation change in our simulations. The spectrum of summer rainfall over the Sahel and West Africa reveals enhanced synoptic time scale (3-to-6 days) variability during the mid-Holocene, which is consistent with the enhanced AEW activity influence. Specifically, the southern AEW track strengthens and migrates poleward during the mid-Holocene period, which modulates summer rainfall over the Sahel and West Africa. By comparison, the northern AEW track changes less and produces a minor contribution to rainfall changes in those regions. We find enhanced baroclinic and barotropic instabilities to promote the AEW activity during the mid-Holocene, with a doubling of the eddy kinetic energy of the meridional wind from that in PI, and baroclinic energy conversion plays a more important role. Stronger low-level meridional thermal gradients increase moisture flux from the Atlantic Ocean to inland.The amplified AEW activity, together with promoted moist convection and increased precipitation, results in a northern shift of the summer rainfall band during the mid-Holocene.

Funder

Academy of Finland

Vetenskapsrådet

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3