African Easterly Wave Dynamics in a Mesoscale Numerical Model: The Upscale Role of Convection

Author:

Berry Gareth J.1,Thorncroft Chris D.2

Affiliation:

1. Monash Weather and Climate, Monash University, Clayton, Victoria, Australia

2. University at Albany, State University of New York, Albany, New York

Abstract

Abstract To examine the dynamical role of convection in African easterly wave (AEW) life cycles the Weather Research and Forecasting (WRF) model is used to simulate the evolution of a single AEW from September 2004. The model simulations are validated against corresponding numerical weather prediction analyses and the mean fields closely resemble composite structures from previous studies. A potential vorticity (PV) thinking approach is used to highlight the interactions between dynamics and convection. Organized deep convection embedded within the AEW has a large contribution to the synoptic-scale mean PV and energetics of the AEW. The PV tendency is maximized in the lower troposphere, consistent with the vertical gradient in diabatic heating rates in the areas of convection. By examining terms in the Lorenz energy cycle, it is shown that diabatic heating associated with convection is as important as adiabatic energy conversion in producing eddy available potential energy of the synoptic AEW, implying that AEWs are best described as hybrid adiabatic and diabatic structures. The net effect of convection is succinctly described using a simulation whereby the parameterizations associated with convection are switched off at the midpoint of the model run. This perturbation experiment shows that, although the AEW continues to propagate westward with a similar phase speed, the net PV value continually weakens with time. This result proves that convection is vital for the maintenance of the AEW as it propagates across West Africa and suggests that without active convection the synoptic AEW cannot persist for an extended length of time.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3