Evaluation of synoptic eddy activities and their feedback onto the midlatitude jet in five atmospheric reanalyses with coarse versus fine model resolutions

Author:

Sang Xiaozhuo,Yang Xiu-QunORCID,Tao Lingfeng,Fang Jiabei,Sun Xuguang

Abstract

AbstractInteraction between synoptic eddy and mean flow plays a crucial role in maintaining midlatitude westerly jet. In this study, climatologies of synoptic eddy activities and their feedback onto midlatitude jet for 1980–2016 are evaluated and compared through analyzing daily data from five atmospheric reanalyses with different resolutions including one coarse-resolution reanalysis (NCEP2) and four fine-resolution reanalyses (ERA-Interim, JRA-55, MERRA-2, and CFSR). Horizontal resolutions of the atmospheric models generating those reanalyses are approximately equivalent to 210, 79, 60, 50, and 38 km, respectively. Results show that the eddy activities and their feedback onto the midlatitude jet in those fine-resolution reanalyses are consistently and significantly stronger than those in the coarse-resolution reanalysis (NCEP2). The maximal relative increases that are found to occur primarily in the midlatitudes of the Southern Hemisphere are estimated to be up to 55% for the baroclinicity, 53% for the eddy energetics, 59% for the eddy forcing, and even 85% for the eddy feedback onto the mean flow. Those increases are reasonably conjectured to be related to increased model resolutions, since the synoptic eddy genesis is proportional to the low-level atmospheric meridional temperature gradient which is sensitive to the meridional resolution of atmospheric models. Although the coarse-resolution reanalysis resolves synoptic eddies insufficiently and thus underestimates their feedback onto the mean flow, the magnitudes of eddy-driven jets are almost the same among five reanalyses, implying a mismatch between the eddy feedback and the eddy-driven jet in the coarse-resolution reanalysis. Therefore, the results of this study imply the importance of using fine-resolution reanalyses in accurately understanding the midlatitude synoptic eddy–mean flow interaction.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3