Impact of volcanic aerosol hemispheric symmetry on Sahel rainfall

Author:

Jacobson Tess W. P.ORCID,Yang Wenchang,Vecchi Gabriel A.,Horowitz Larry W.

Abstract

AbstractThe semi-arid African Sahel region is highly sensitive to changes in monsoon precipitation, as much of the region’s workforce is employed in the agricultural industry (Hamro-Drotz and Programme 2011). Thus, studying the response of rainfall and aridity in this region to radiative perturbations is a matter of pressing humanitarian relevance. In addition, there is evidence to suggest that spatially asymmetric volcanic aerosols produce different hydroclimatic responses based on their hemispheric symmetry, both globally and in the Sahel. We use two different climate models, GFDL’s FLOR model (Vecchi et al. in J Clim 27(21):7994–8016, 2014) and NCAR’s CESM 1.1 model (Otto-Bliesner et al. in Bull Am Meteorol Soc 97(5):735–754, 2016), to characterize the response of rainfall in the Sahel to large volcanic eruptions based on the meridional symmetry of the volcanic eruptions. We find that in both the FLOR experiments simulating three large twentieth century eruptions and in the CESM Last Millennium Ensemble simulations of 46 historic volcanic eruptions, asymmetric Northern Hemisphere cooling causes a subsequent drying response in the Sahel, and Southern Hemisphere cooling causes a wetting, or “greening” response. Symmetric volcanic eruptions have a relatively small effect on rainfall in the Sahel. We also find that the FLOR results show a consistent response in the annual rainfall cycle in the Sahel for all three of the eruptions analyzed, with a reduction in rainfall in early summer followed by an increased rainfall in late summer. The annual cycle response of rainfall in the Sahel from the CESM experiments is different, in that the SH eruptions cause a rainfall maximum in August, NH eruptions cause a rainfall minimum in September, and symmetric eruptions show a slight increase in August and a decrease in October. Our results highlight the need for accurate meridional structures in historic volcanic forcing data used for climate models as well as the need for further study on regional effects of hemispherically asymmetric radiative forcing, especially as they might pertain to aerosol geoengineering.

Funder

National Oceanic and Atmospheric Administration

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3