Representation of sea ice regimes in the Western Ross Sea, Antarctica, based on satellite imagery and AMPS wind data

Author:

Farooq UsamaORCID,Rack Wolfgang,McDonald Adrian,Howell Stephen

Abstract

AbstractSea ice drift data at high spatial resolution and surface wind model output are used to explore atmosphere-sea ice interactions in the Western Ross Sea including the three main polynyas areas; McMurdo Sound polynya (MSP), Terra Nova Bay polynya (TNBP), and the Ross Sea polynya (RSP). This study quantifies the relationship between the winds and sea ice drift and observes the average and annual anomalies across the region. Sea ice drift velocities are based on high-resolution (150 m) Advanced Synthetic Aperture Radar (ASAR) images from Envisat for winters between 2002 and 2012. Sea ice motion vectors were first correlated with the corresponding Antarctic Mesoscale Prediction System (AMPS) surface wind velocities, and the sensitivity of the spatial correlations and residuals were examined. Four drift parameters were selected (mean drift, the correlation between drift and wind, drift to wind scaling factor, and the directional drift constancy) to perform an unsupervised k-means classification to automatically distinguish six zones of distinctive sea ice characteristics solely based on ice drift and wind information. Results indicate a heterogeneous pattern of sea ice movement at a rate ranging from 0.41 to 2.24% of the wind speed in different areas. We also find that the directional constancy of sea ice drift is closely related to the wind fields. Sea ice drift and wind velocities display the highest correlation in free-drift areas (R = 0.70), followed by deformational drift zones (R = 0.54), and more random drift areas (R = 0.28). The classification illustrates the significance of localized wind-driven sea ice drift in this coastal area resulting in zones of convergence, shear, and free drift. The results also indicate that the most persistent patterns of sea ice motion are near the RSP and TNBP areas, both being driven by strong localized winds. Our findings identify that large-scale sea ice motion is predominantly wind-driven over much of the study area while ocean currents play only a minor role.

Funder

The research is supported by the University of Canterbury doctoral scholarship, the Deep South National Science Challenge, New Zealand, and the Antarctic Science Platform.

University of Canterbury

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3