Analysis of the Antarctic Marginal Ice Zone Based on Unsupervised Classification of Standalone Sea Ice Model Data

Author:

Day Noah S.1ORCID,Bennetts Luke G.1ORCID,O’Farrell Siobhan P.2ORCID,Alberello Alberto3ORCID,Montiel Fabien4ORCID

Affiliation:

1. School of Computer and Mathematical Sciences University of Adelaide Adelaide SA Australia

2. CSIRO Environment Aspendale VIC Australia

3. School of Mathematics University of East Anglia Norwich UK

4. Department of Mathematics and Statistics University of Otago Dunedin New Zealand

Abstract

AbstractThe Antarctic marginal ice zone, the regularly wave‐affected outer band of the sea ice covered Southern Ocean, typically contains an unconsolidated ice cover comprised of smaller, thinner floes than the inner ice pack. Thus, it is a highly dynamic region and susceptible to rapid expansion and contraction, making it a focal area for understanding and predicting the response of Antarctic sea ice to a changing climate. This novel study uses unsupervised statistical clustering of sea ice data simulated by a global sea ice model (standalone CICE6 combined with a wave propagation module and prescribed ocean) to address the outstanding challenge of separating the marginal ice zone from the inner ice pack in sea ice data sets. The method identifies a marginal ice zone with the desired characteristics and floe size is shown to be the key variable in the classification. Simulated marginal ice zone widths are similar to those derived from satellite observations of wave penetration distances, but contrast with those using the standard 15%–80% areal sea ice concentration proxy, particularly during austral winter. The simulated marginal ice zone is found to undergo a seasonal transition due to new ice formation in winter, increased drift in spring, and increased rates of wave‐induced breakup and melting in summer. The understanding gained from the study motivates incorporation of wave and floe‐scale processes in sea ice models, and the methods are available for application to outputs from high‐resolution and coupled sea ice–ocean–wave models for more detailed studies of the marginal ice zone (in both hemispheres).

Publisher

American Geophysical Union (AGU)

Reference109 articles.

1. Drift of Pancake Ice Floes in the Winter Antarctic Marginal Ice Zone During Polar Cyclones

2. ASPeCt. (2012).Glossary & image library. Retrieved fromhttps://aspect.antarctica.gov.au/home/glossary‐and‐image‐library.html

3. Impact of a New Sea Ice Thermodynamic Formulation in the CESM2 Sea Ice Component

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3