Abstract
AbstractTree-ring width is one of the most widely used proxy in paleoclimatological studies. Due to various environmental and biological processes, however, the associated reconstructions often suffer from overestimated low-frequency variability. In this study, a new correction approach is proposed using fractional integral techniques that corrects for the overestimated long-term persistence in tree-ring width based hydroclimatic reconstructions. Assuming the high frequency interannual climate variability is well recorded by tree rings, the new approach is able to (i) extract the associated short-term forcing signals of various climate conditions from the reconstructions, and (ii) simulate the long-term impacts of these short-term forcings by setting a proper fractional integral order in the fractional integral statistical model (FISM). In this way, the overestimated long-term persistence, as well as the associated low-frequency variability in tree-ring width based reconstructions can be corrected. We apply this approach to a recently published dataset of precipitation field reconstructions over China covering the past half millennium and removed the redundant, non-precipitation related long-term persistence. Compared to the original reconstruction with multi-century long-term dry conditions in western China, the corrected reconstruction considerably shortened the wet/dry periods to decadal scales. In view of the widespread non-climatic/mixed-climatic signals in tree-ring widths, this new approach may serve as a useful post-processing method to reconsider previous reconstructions. It may even be combined with the current detrending approaches by upgrading the pre-whitening methods.
Funder
National Natural Science Foundation of China
Science and technology project of Beijing Meteorological Service
Academy of Athens and the Greek ”National Research Network on Climate Change and its Impact”
German Federal Ministry of Education and Research (BMBF) projects NUKLEUS and ClimXtreme
Special Project for Innovation and development of China Meteorological Administration
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献