495-Year Wood Anatomical Record of Siberian Stone Pine (Pinus sibirica Du Tour) as Climatic Proxy on the Timberline

Author:

Zhirnova Dina F.,Belokopytova Liliana V.ORCID,Upadhyay Keshav K.ORCID,Tripathi Shri K.,Babushkina Elena A.ORCID,Vaganov Eugene A.

Abstract

The application of quantitative wood anatomy (QWA) in dendroclimatic analysis offers deep insight into the climatic effect on tree-ring formation, which is crucial in understanding the forests’ response to climate change. However, interrelations between tree-ring traits should be accounted to separate climatic signals recorded during subsequent stages of cell differentiation. The study was conducted in the South Siberian alpine timberline on Pinus sibirica Du Tour, a species considered unpromising in dendroclimatology. Relationships between tree-ring width, cell number N, mean and maximum values of radial diameter D, and cell wall thickness (CWT) were quantified to obtain indexed anatomical chronologies. Exponential functions with saturation D(N) and CWT(N) were proposed, which explained 14–69% and 3–61% of their variability, respectively. Indexation unabated significance of the climatic signals but separated them within a season. Analysis of pointer years and climatic extremes revealed predominantly long-term climatogenic changes of P. sibirica radial growth and QWA and allowed to obtain QWA-based 11-year filtered reconstructions of vegetative season climatic characteristics (R2adj = 0.32–0.66). The revealed prevalence of low-frequency climatic reactions is probably explained by a strategy of slow accumulation and utilization of resources implemented by P. sibirica. It makes this species’ QWA a promising proxy for decadal climatic variations in various intra-seasonal timeframes.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3