Variations in biomass of fungal guilds are primarily driven by factors related to soil conditions in Mediterranean Pinus pinaster forests

Author:

Hagenbo AndreasORCID,Alday Josu G.,Martínez de Aragón Juan,Castaño Carles,de-Miguel Sergio,Bonet José Antonio

Abstract

AbstractSoil fungi are vital for regulating ecosystem carbon balance and productivity, by driving processes related to soil carbon and nutrient cycling. The rate and capacity of fungi-mediated processes are linked to fungal biomass dynamics and identifying the drivers of fungal biomass is important for predicting ecosystem responses to environmental changes. Here, ergosterol-based fungal biomass estimates and ITS2-based fungal community composition profiles were used to assess biomass of fungal guilds. Effects of forest management (thinning), environmental factors (soil chemical properties, microclimate, weather and forest stand composition) and season were related to the fungal biomass dynamics to identify the guild-specific drivers of biomass. Biomass of most fungal guilds increased with nutrient availability (nitrogen and potassium in particular) and decreased with forest thinning, and variation in total biomass was mainly driven by variation in mycorrhizal biomass. Most fungal guilds reached a minimum in biomass during summer except for mycorrhizal and root-associated ascomycetes, which instead reached a minimum during winter. Mycorrhizal fungi and root-associated ascomycetes displayed similar spatiotemporal variability in biomass. Yeasts and moulds were the only fungi displaying strong linkages with microclimate, whereas pathogenic and moss-associated fungi largely diverged in their responses to the environmental factors. The results of our study highlight that environmental factors related to the availability of soil nutrients may have an overall stronger effect on variation in biomass of fungal guilds in Mediterranean Pinus pinaster forests than direct influences of microclimate, weather and forest management.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ramon y Cajal

Generalitat de Catalunya

the Norwegian Institute for Bioeconomy Research

Norwegian Institute of Bioeconomy Research

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science,Microbiology

Reference84 articles.

1. Alday JG, Martínez de Aragón J, de-Miguel S, Bonet JA (2017) Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients. Sci Rep 7:45824. https://doi.org/10.1038/srep45824

2. Algora Gallardo C, Baldrian P, López-Mondéjar R (2021) Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biol Fertil Soils 57:77–88. https://doi.org/10.1007/s00374-020-01507-3

3. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

4. Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M, Chen J, Clark KL, Davis KJ, Desai AR, Dore S, Engel V, Fuentes JD, Goldstein AH, Goulden ML, Kolb TE, Lavigne MB, Law BE, Margolis HA, Martin T, McCaughey JH, Misson L, Montes‐Helu M, Noormets A, Randerson JT, Starr G, Xiao J (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res Biogeosci. https://doi.org/10.1029/2010JG001390

5. Awad A, Majcherczyk A, Schall P, Schröter K, Schöning I, Schrumpf M, Ehbrecht M, Boch S, Kahl T, Bauhus J, Seidel D, Ammer C, Fischer M, Kües U, Pena R (2019) Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biol Biochem 131:9–18. https://doi.org/10.1016/j.soilbio.2018.12.014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3