Lysine and homoarginine are closely interrelated metabolites in the rat

Author:

Baskal Svetlana,Dimina Laurianne,Tsikas Stefanos A.,Mosoni Laurent,Remond Didier,Mariotti François,Tsikas DimitriosORCID

Abstract

AbstractL-Lysine (Lys) and L-arginine (Arg), but not L-homoarginine (hArg), are proteinogenic amino acids. In healthy humans, oral administration of hArg increased the plasma concentration of Lys, suggesting Lys as a metabolite of hArg. In humans and animals, hArg is biosynthesized from Arg and Lys by arginine:glycine amidinotransferase (AGAT). In vitro, recombinant human arginase and bovine liver arginase I hydrolyzed hArg to Lys, suggesting Lys as a metabolite of hArg. The aim of the present study was to investigate whether changes in blood concentrations of hArg and Lys in old rats fed for 4 months with varied controlled experimental diets could suggest interconversion of these amino acids. Blood samples (n = 253) were taken before (T0) and after 2 months (T2) and 4 months (T4) of the experiment. Plasma concentrations of Lys and hArg were determined by gas chromatography–mass spectrometry. The plasma hArg concentration markedly correlated with the plasma Lys concentration at all timepoints (r ≥ 0.7, P < 0.0001). Further analysis demonstrated that hArg and Lys are closely and specifically associated independently of experimental time/rat age and diet, suggesting that hArg and Lys are mutual metabolites in old rats. Based on the plasma concentration changes, the median yield of hArg from Lys was determined to be 0.17% at T0 and each 0.27% at T2 and T4. With a circulating concentration of about 3 µM, hArg a major metabolite of Lys in healthy humans. hArg supplementation is currently investigated as a cardioprotective means to improve impaired hArg synthesis. Present knowledge suggests that Lys rather than hArg supplementation may be even more favorable.

Funder

French Research Agency

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,Clinical Biochemistry,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3