Development, validation of a GC–MS method for the simultaneous measurement of amino acids, their PTM metabolites and AGEs in human urine, and application to the bi-ethnic ASOS study with special emphasis to lysine

Author:

Baskal Svetlana,Bollenbach Alexander,Mels Catharina,Kruger Ruan,Tsikas DimitriosORCID

Abstract

AbstractA gas chromatography-mass spectrometry (GC–MS) method was developed and validated in relevant concentration ranges for the simultaneous measurement of l-lysine (Lys, L) and its Nε- and Nα-methylated (M), Nε- and Nα-acetylated (Ac), Nε-carboxymethylated (CM) and Nε-carboxyethylated (CE) metabolites in human urine. Analyzed Lys metabolites were the post-translational modification (PTM) products Nε-mono-, di- and trimethyllsine, Nε-MML, Nε-DML, Nε-TML, respectively, Nα-ML, Nε-AcL, Nα-AcL, and its advanced glycation end-products (AGEs) Nε-CML, Nε-CM-[2,4,4-2H3]Lys (d3-CML), Nε-CEL and furosine. AGEs of arginine (Arg) and cysteine (Cys) were also analyzed. De novo synthesized trideutero-methyl esters (R-COOCD3) from unlabelled amino acids and derivatives were used as internal standards. Native urine samples (10 µL aliquots) were evaporated to dryness under a stream of nitrogen. Analytes were esterified using 2 M HCl in methanol (60 min, 80 °C) and subsequently amidated by pentafluoropropionic anhydride in ethyl acetate (30 min, 65 °C). The generated methyl ester-pentafluoropropionyl (Me-PFP) derivatives were reconstituted in borate buffer and extracted immediately with toluene. GC–MS analyses were performed by split-less injection of 1-µL aliquots, oven-programmed separation and negative-ion chemical ionization (NICI). Mass spectra were generated in the scan mode (range, m/z 50–1000). Quantification was performed in the selected-ion monitoring (SIM) mode using a dwell time of 50 or 100 ms for each ion. The GC–MS method was suitable for the measurement of Lys and all of its metabolites, except for the quaternary ammonium cation Nε-TML. The Me-PFP derivatives of Lys, Arg and Cys and its metabolites eluted in the retention time window of 9 to 14 min. The derivatization of Nε-CML, d3-CML and Nε-CEL was accompanied by partial Nε-decarboxylation and formation of the Me-PFP Lys derivative. The lowest derivatization yield was observed for Nε-DML, indicating a major role of the Nε-DML group in Lys derivatization. The GC–MS method enables precise (relative standard deviation, RSD < 20%) and accurate (bias, < ± 20%) simultaneous measurement of 33 analytes in human urine in relevant concentration ranges. We used the method to measure the urinary excretion rates of Lys and its PTM metabolites and AGEs in healthy black (n = 39) and white (n = 41) boys of the Arterial Stiffness in Offspring Study (ASOS). No remarkable differences were found indicating no ethnic-related differences in PTM metabolites and AGEs except for Nε-monomethyllysine and S-(2-carboxymethylcysteine).

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,Clinical Biochemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3