Can machine learning algorithms deliver superior models for rental guides?

Author:

Trinkaus Oliver,Kauermann Göran

Abstract

AbstractIn this paper we discuss the use and potential advantages and disadvantages of machine learning driven models in rental guides. Rental guides are a formal legal instrument in Germany for surveying rents of flats in cities and municipalities, which are today based on regression models or simple contingency tables. We discuss if and how modern and timely methods of machine learning outperform existing and established routines. We make use of data from the Munich rental guide and mainly focus on the predictive power of these models. We discuss the “black-box” character making some of these models difficult to interpret and hence challenging for applications in the rental guide context. Still, it is of interest to see how “black-box” models perform with respect to prediction error. Moreover, we study adversarial effects, i.e. we investigate robustness in the sense how corrupted data influence the performance of the prediction models. With the data at hand we show that models with promising predictive performance suffer from being more vulnerable to corruptions than classic linear models including Ridge or Lasso regularization.

Funder

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Social Sciences,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial issue 3 + 4, 2023;AStA Wirtschafts- und Sozialstatistisches Archiv;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3