Influence of alloying elements on microstructure, mechanical properties and corrosion behaviour of hypoeutectic Sn-6.5wt%Zn-0.5 wt%X (X = Ag, Al, Cu) lead-free solders

Author:

González-Parra R.ORCID,Novelo-Peralta O.,Lara-Rodríguez G.,Figueroa I.,Barba A.,Hernandez M.

Abstract

AbstractLead-free solders are promising candidates for the replacement of Sn–Pb solders due to their environmental friendly, good thermal properties and wettability which render them suitable for this application. In this study, a set of lead-free solders Sn-6.5 wt. and Sn-6.5 wt% Zn-0.5 wt% X (X = Ag, Al, Cu) were studied by metallography, mechanical and electrochemical techniques. The results show that the addition of the alloying elements Ag, Al and Cu modifies the amount of the eutectic phase and promotes the formation of intermetallic compounds (IMCs). The corrosion resistance of the samples also modified, showing that the formation of IMCs can have detrimental effects with higher current densities in saline media, as determined for the Ag and Al alloyed solders. The corrosion resistance is higher for the unalloyed and the Sn-6.5 wt%Zn-0.5 wt% Cu alloy. However, the addition of Cu not only stabilizes the corrosion products thus increasing the protective properties of the alloy, but also modifies the mechanical behaviour of the lead-free solders and so enhancing the UTS values and ductility. Furthermore, the surface morphology is influenced by the alloying elements showing a smooth surface (Sn-Zn, Cu) or a highly corroded appearance with round aggregates (Ag and Al). These new lead-free solders have a lower melting point with higher ductility than the commercial SAC 305. Therefore, these alternatives have high potential in applications in mechanical engineering.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3