Tuning the electronic properties of C12A7 via Sn doping and encapsulation

Author:

Kuganathan NavaratnarajahORCID,Chroneos Alexander

Abstract

AbstractCation doping in electride materials has been recently considered as a viable engineering strategy to enhance the electron concentration. Here we apply density functional theory-based energy minimisation techniques to investigate the thermodynamical stability and the electronic structures of Sn-doped and Sn-encapsulated in stoichiometric and electride forms of C12A7. The present calculations reveal that encapsulation is exoergic and doping is endoergic. The electride form is more energetically favourable than the stoichiometric form for both encapsulation and doping. Encapsulation in the electride results a significant electron transfer (1.52 |e|) from the cages consisting of extra-framework electrons to the Sn atom. The Sn forms almost + 4 state in the doped configuration in the stoichiometric form as reported for the electride form in the experiment. Similar charge state for the Sn is expected for the electride form though the extra-framework electrons localised on the Sn. Resultant complexes of both forms are magnetic. Whilst significant Fermi energy shift is noted for the doping in C12A7:O2− (by 1.60 eV) towards the conduction band, there is a very small shift (0.04 eV) is observed in C12A7:e. Future experimental study on the encapsulation of Sn in both forms of C12A7 and doping of Sn in the stoichiometric form can use this information to interpret their experimental data.

Funder

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heavy metals in yttrium silicide electride (Y5Si3:e−);Journal of Applied Physics;2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3