A Parametrizable High-Level Synthesis Library for Accelerating Neural Networks on FPGAs

Author:

Kalms LesterORCID,Rad Pedram AminiORCID,Ali MuhammadORCID,Iskander Arsany,Göhringer DianaORCID

Abstract

AbstractIn recent years, Convolutional Neural Network CNN have been incorporated in a large number of applications, including multimedia retrieval and image classification. However, CNN based algorithms are computationally and resource intensive and therefore difficult to be used in embedded systems. FPGA based accelerators are becoming more and more popular in research and industry due to their flexibility and energy efficiency. However, the available resources and the size of the on-chip memory can limit the performance of the FPGA accelerator for CNN. This work proposes an High-Level Synthesis HLS library for CNN algorithms. It contains seven different streaming-capable CNN (plus two conversion) functions for creating large neural networks with deep pipelines. The different functions have many parameter settings (e.g. for resolution, feature maps, data types, kernel size, parallelilization, accuracy, etc.), which also enable compile-time optimizations. Our functions are integrated into the HiFlipVX library, which is an open source HLS FPGA library for image processing and object detection. This offers the possibility to implement different types of computer vision applications with one library. Due to the various configuration and parallelization possibilities of the library functions, it is possible to implement a high-performance, scalable and resource-efficient system, as our evaluation of the MobileNets algorithm shows.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3