A Pruning Method Based on Feature Map Similarity Score

Author:

Cui Jihua1,Wang Zhenbang2,Yang Ziheng3,Guan Xin4

Affiliation:

1. Department of Power Engineering, Harbin Electric Power Vocational and Technology College, Harbin 150030, China

2. Dispatching and Control Center, State Grid Heilongjiang Electric Power Company, Ltd., Harbin 150090, China

3. School of Electronic Engineering, Heilongjiang University, Harbin 150080, China

4. School of Data Science and Technology, Heilongjiang University, Harbin 150080, China

Abstract

As the number of layers of deep learning models increases, the number of parameters and computation increases, making it difficult to deploy on edge devices. Pruning has the potential to significantly reduce the number of parameters and computations in a deep learning model. Existing pruning methods frequently require a specific distribution of network parameters to achieve good results when measuring filter importance. As a result, a feature map similarity score-based pruning method is proposed. We calculate the similarity score of each feature map to measure the importance of the filter and guide filter pruning using the similarity between the filter output feature maps to measure the redundancy of the corresponding filter. Pruning experiments on ResNet-56 and ResNet-110 networks on Cifar-10 datasets can compress the model by more than 70% while maintaining a higher compression ratio and accuracy than traditional methods.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference25 articles.

1. NDNC-BAN: Supporting rich media healthcare services via named data networking in cloud-assisted wireless body area networks;Chen;Inf. Sci.,2014

2. Imperceptible, designable, and scalable braided electronic cord;Chen;Nat. Commun.,2022

3. Joint Sensing Adaptation and Model Placement in 6G Fabric Computing;Hao;IEEE J. Sel. Areas Commun.,2023

4. Cognitive information measurements: A new perspective;Chen;Inf. Sci.,2019

5. Lin, T., Stich, S.U., Flores, L.F.B., Dmitriev, D., and Jaggi, M. (2020). Dynamic Model Pruning with Feedback. The ICLR-International Conference on Learning Representations. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3