Evaluation of new alternative methods for the identification of estrogenic, androgenic and steroidogenic effects: a comparative in vitro/in silico study

Author:

Najjar A.ORCID,Wilm A.,Meinhardt J.,Mueller N.,Boettcher M.,Ebmeyer J.,Schepky A.,Lange D.

Abstract

AbstractA suite of in vitro assays and in silico models were evaluated to identify which best detected the endocrine-disrupting (ED) potential of 10 test chemicals according to their estrogenic, androgenic and steroidogenic (EAS) potential compared to the outcomes from ToxCast. In vitro methods included receptor-binding, CALUX transactivation, H295R steroidogenesis, aromatase activity inhibition and the Yeast oestrogen (YES) and Yeast androgen screen (YAS) assays. The impact of metabolism was also evaluated. The YES/YAS assays exhibited a high sensitivity for ER effects and, despite some challenges in predicting AR effects, is a good initial screening assay. Results from receptor-binding and CALUX assays generally correlated and were in accordance with classifications based on ToxCast assays. ER agonism and AR antagonism of benzyl butyl phthalate were abolished when CALUX assays included liver S9. In silico final calls were mostly in agreement with the in vitro assays, and predicted ER and AR effects well. The efficiency of the in silico models (reflecting applicability domains or inconclusive results) was 43–100%. The percentage of correct calls for ER (50–100%), AR (57–100%) and aromatase (33–100%) effects when compared to the final ToxCast call covered a wide range from highly reliable to less reliable models. In conclusion, Danish (Q)SAR, Opera, ADMET Lab LBD and ProToxII models demonstrated the best overall performance for ER and AR effects. These can be combined with the YES/YAS assays in an initial screen of chemicals in the early tiers of an NGRA to inform on the MoA and the design of mechanistic in vitro assays used later in the assessment. Inhibition of aromatase was best predicted by the Vega, AdmetLab and ProToxII models. Other mechanisms and exposure should be considered when making a conclusion with respect to ED effects.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3