On periodic solutions for one-phase and two-phase problems of the Navier–Stokes equations

Author:

Eiter Thomas,Kyed Mads,Shibata Yoshihiro

Abstract

AbstractThis paper is devoted to proving the existence of time-periodic solutions of one-phase or two-phase problems for the Navier–Stokes equations with small periodic external forces when the reference domain is close to a ball. Since our problems are formulated in time-dependent unknown domains, the problems are reduced to quasilinear systems of parabolic equations with non-homogeneous boundary conditions or transmission conditions in fixed domains by using the so-called Hanzawa transform. We separate solutions into the stationary part and the oscillatory part. The linearized equations for the stationary part have eigen-value 0, which is avoided by changing the equations with the help of the necessary conditions for the existence of solutions to the original problems. To treat the oscillatory part, we establish the maximal $$L_p$$ L p $$L_q$$ L q regularity theorem of the periodic solutions for the system of parabolic equations with non-homogeneous boundary conditions or transmission conditions, which is obtained by the systematic use of $${\mathcal R}$$ R -solvers developed in Shibata (Diff Int Eqns 27(3–4):313–368, 2014; On the $${{\mathcal {R}}}$$ R -bounded solution operators in the study of free boundary problem for the Navier–Stokes equations. In: Shibata Y, Suzuki Y (eds) Springer proceedings in mathematics & statistics, vol. 183, Mathematical Fluid Dynamics, Present and Future, Tokyo, Japan, November 2014, pp 203–285, 2016; Comm Pure Appl Anal 17(4): 1681–1721. 10.3934/cpaa.2018081, 2018; $${{\mathcal {R}}}$$ R boundedness, maximal regularity and free boundary problems for the Navier Stokes equations, Preprint 1905.12900v1 [math.AP] 30 May 2019) to the resolvent problem for the linearized equations and the transference theorem obtained in Eiter et al. ($${{\mathcal {R}}}$$ R -solvers and their application to periodic $$L_p$$ L p estimates, Preprint in 2019) for the $$L_p$$ L p boundedness of operator-valued Fourier multipliers. These approaches are the novelty of this paper.

Publisher

Springer Science and Business Media LLC

Subject

Mathematics (miscellaneous)

Reference24 articles.

1. K. de Leeuw, On$$L_p$$multipliers, Ann. Math., 81(2) (1965), 364–379.

2. T. Eiter, M. Kyed, and Y. Shibata, $${{\cal{R}}}$$-solvers and their application to periodic$$L_p$$estimates, Preprint in 2019.

3. G. P. Galdi, M. Kyed, Time-periodic solutions to the Navier-Stokes equations, Handbook of mathematical analysis in mechanics of viscous fluids, 509–578, Springer, Cham, 2018.

4. G. P. Galdi, H. Sohr, Existence and uniqueness of time-periodic physically reasonable viscous fluid flow problems, Arch. Rational Mech. Anal., 172 (2004), 363–406.

5. M. Geissert, M. Hieber, T. H. Nguyen, A general approach to time periodic incompressible viscous fluid flow problems, Arch. Rational Mech. Anal., 220 (2016), 1095–1118.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3