Abstract
AbstractGeneral evolution equations in Banach spaces are investigated. Based on an operator-valued version of de Leeuw’s transference principle, time-periodic $\mathrm {L}_{p}$
L
p
estimates of maximal regularity type are carried over from ℛ-bounds of the family of solution operators (ℛ-solvers) to the corresponding resolvent problems. With this method, existence of time-periodic solutions to the Navier-Stokes equations is shown for two configurations: in a periodically moving bounded domain and in an exterior domain, subject to prescribed time-periodic forcing and boundary data.
Funder
Toyota Central Research Institute Joint Research Fund
Japan Society for the Promotion of Science London
Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e.V.
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Amann, H.: Periodic solutions of semilinear parabolic equations. In: Nonlinear Analysis, pp. 1–29. Elsevier, Amsterdam (1978)
2. Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)
3. Artemiev, N.: Über die periodischen Lösungen der nichtlinearen partiellen Differentialgleichungen. Izv. Akad. Nauk SSSR, Ser. Mat. 1937, 15–50 (1937)
4. Bader, R., Kryszewski, W.: On the solution sets of differential inclusions and the periodic problem in Banach spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 54(4), 707–754 (2003)
5. Bange, D.W.: Periodic solutions of a quasilinear parabolic differential equation. J. Differ. Equ. 17(1), 61–72 (1975)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献