Abstract
AbstractWe study stochastic model reduction for evolution equations in infinite-dimensional Hilbert spaces and show the convergence to the reduced equations via abstract results of Wong–Zakai type for stochastic equations driven by a scaled Ornstein–Uhlenbeck process. Both weak and strong convergence are investigated, depending on the presence of quadratic interactions between reduced variables and driving noise. Finally, we are able to apply our results to a class of equations used in climate modeling.
Publisher
Springer Science and Business Media LLC
Subject
Mathematics (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献