Author:
Flandoli Franco,Luongo Eliseo
Publisher
Springer Nature Singapore
Reference91 articles.
1. A. Agresti, M. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces Part I. Stochastic maximal regularity and local existence. Nonlinearity 35(8), 4100 (2022)
2. A. Agresti, M. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces Part II. Blow-up criteria and instantaneous regularization. arXiv:2012.04448
3. D. Alonso-Orán, A. Bethencourt de León, D. D. Holm, S. Takao, Modelling the climate and weather of a 2D Lagrangian-averaged Euler-Boussinesq equation with transport noise. J. Stat. Phys. 179(5–6), 1267–1303 (2020)
4. M. Arnaudon, A.B. Cruzeiro, Stochastic Lagrangian flows and the Navier–Stokes equations, in Stochastic Analysis: A Series of Lectures. Progress in Probability, vol. 68 (Birkhäuser/Springer, Basel, 2015), pp. 55–75
5. S. Attanasio, F. Flandoli, Zero-noise solutions of linear transport equations without uniqueness: an example. C. R. Acad. Sci. Paris I 347, 753–756 (2009)