Abstract
AbstractWe study elliptic and parabolic boundary value problems in spaces of mixed scales with mixed smoothness on the half-space. The aim is to solve boundary value problems with boundary data of negative regularity and to describe the singularities of solutions at the boundary. To this end, we derive mapping properties of Poisson operators in mixed scales with mixed smoothness. We also derive $$\mathcal {R}$$
R
-sectoriality results for homogeneous boundary data in the case that the smoothness in normal direction is not too large.
Funder
Horizon 2020
Studienstiftung des Deutschen Volkes
Publisher
Springer Science and Business Media LLC
Subject
Mathematics (miscellaneous)
Reference49 articles.
1. E. Alòs and S. Bonaccorsi. Stochastic partial differential equations with Dirichlet white-noise boundary conditions. Ann. Inst. H. Poincaré Probab. Statist., 38(2):125–154, 2002.
2. H. Amann. Navier-Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Phys., 10(suppl. 1):1–11, 2003.
3. A. Anop, R. Denk, and A. Murach. Elliptic problems with rough boundary data in generalized sobolev spaces. arXiv preprintarXiv:2003.05360, 2020.
4. S. Aziznejad and J. Fageot. Wavelet Analysis of the Besov Regularity of Lévy White Noises. arXiv preprintarXiv:1801.09245v2, 2020.
5. Z. Brzeźniak, B. Goldys, S. Peszat, and F. Russo. Second order PDEs with Dirichlet white noise boundary conditions. J. Evol. Equ., 15(1):1–26, 2015.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献