Impact of vacuum ultraviolet (VUV) photolysis on ethylene degradation kinetics and removal in mixed-fruit storage, and direct exposure to ‘Fuji’ apples during storage

Author:

Mabusela Bongolwethu P.,Belay Zinash A.,Godongwana Buntu,Caleb Oluwafemi JamesORCID

Abstract

AbstractAccumulated ethylene in fruit storage/transportation causes rapid senescence resulting in reduced shelf-life and postharvest losses. The aim of this study was to investigate the application of vacuum ultraviolet (VUV) photolysis modular reactor for fruit storage. The first experiment compared the effectiveness of VUV photolysis reactor with the standard fruit industry adsorbent (potassium permanganate, KMnO4) on the removal of ethylene from mixed-fruit loading of apples, banana, and pears stored at ambient temperature (16 °C) for 6 days. Second study evaluated the impact of direct VUV radiation on quality attributes of apples stored at 10 °C for 21 days. Results showed that ethylene produced in mixed-fruit loading storage significantly (p < 0.05) reduced by 86.9% in the storage chamber connected to VUV modular reactor compared to 25.4% for storage under potassium permanganate. Direct exposure of apples to VUV radiation successfully reduced both ethylene and respiration rate but damaged the skin of the apples. Hue angle and lightness (L*) for apples exposed to VUV radiation declined significantly (p < 0.05) from 60.7 ± 1.09 to 33.5 ± 9.51 and 58.1 ± 3.60 to 50.4 ± 1.13, respectively. This study showed the potential of VUV photolysis as an innovative technique for removing ethylene from storage facility.

Funder

Stellenbosch University

Publisher

Springer Science and Business Media LLC

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3