Abstract
Abstract
VT-harmonic maps generalize the standard harmonic maps, with respect to the structure of both domain and target. These can be manifolds with natural connections other than the Levi-Civita connection of Riemannian geometry, like Hermitian, affine or Weyl manifolds. The standard harmonic map semilinear elliptic system is augmented by a term coming from a vector field V on the domain and another term arising from a 2-tensor T on the target. In fact, this geometric structure then also includes other geometrically defined maps, for instance magnetic harmonic maps. In this paper, we treat VT-harmonic maps and their parabolic analogues with PDE tools. We establish a Jäger–Kaul type maximum principle for these maps. Using this maximum principle, we prove an existence theorem for the Dirichlet problem for VT-harmonic maps. As applications, we obtain results on Weyl/affine/Hermitian harmonic maps between Weyl/affine/Hermitian manifolds, as well as on magnetic harmonic maps from two-dimensional domains. We also derive gradient estimates and obtain existence results for such maps from noncompact complete manifolds.
Funder
National Natural Science Foundation of China-Yunnan Joint Fund
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献