Harmonic maps with torsion

Author:

Branding Volker

Abstract

AbstractIn this article we introduce a natural extension of the well-studied equation for harmonic maps between Riemannian manifolds by assuming that the target manifold is equipped with a connection that is metric but has non-vanishing torsion. Such connections have already been classified in the work of Cartan (1924). The maps under consideration do not arise as critical points of an energy functional leading to interesting mathematical challenges. We will perform a first mathematical analysis of these maps which we will call harmonic maps with torsion.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference36 articles.

1. Agricola I. Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory. Comm Math Phys, 2003, 232: 535–563

2. Agricola I. The Srní lectures on non-integrable geometries with torsion. Arch Math (Brno), 2006, 42: 5–84

3. Agricola I, Kraus M. Manifolds with vectorial torsion. Differential Geom Appl, 2016, 45: 130–147

4. Agricola I, Thier C. The geodesics of metric connections with vectorial torsion. Ann Global Anal Geom, 2004, 26: 321–332

5. Aronszajn N. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J Math Pures Appl (9), 1957, 36: 235–249

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3