Abstract
AbstractIn this paper, we study the following fractional Choquard equation with critical or supercritical growth $$\begin{aligned} \ (-\Delta )^su+V(x)u=f(x,u)+\lambda \left[ |x|^{-\mu }*|u|^p\right] p|u|^{p-2}u, \quad x \in {\mathbb {R}}^N, \end{aligned}$$
(
-
Δ
)
s
u
+
V
(
x
)
u
=
f
(
x
,
u
)
+
λ
|
x
|
-
μ
∗
|
u
|
p
p
|
u
|
p
-
2
u
,
x
∈
R
N
,
where $$0<s<1$$
0
<
s
<
1
, $$(-\Delta )^s$$
(
-
Δ
)
s
denotes the fractional Laplacian of order s, $$N>2s$$
N
>
2
s
, $$0<\mu <2s$$
0
<
μ
<
2
s
and $$p\ge 2_{\mu ,s}^*:=\frac{2N-\mu }{N-2s}$$
p
≥
2
μ
,
s
∗
:
=
2
N
-
μ
N
-
2
s
, which is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. Under some suitable conditions, we prove that the equation admits a nontrivial solution for small $$\lambda >0$$
λ
>
0
by variational methods, which extends results in Bhattarai in J. Differ. Equ. 263, 3197–3229 (2017).
Funder
NSF of Shandong Province
China Postdoctoral Science Foundation
the Youth Creative Team Sci-Tech Program of Shandong Universities
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference16 articles.
1. Bhattarai, S.: On fractional Schrödinger systems of Choquard type. J. Differ. Equations 263, 3197–3229 (2017)
2. Bellazzini, J., Ozawa, T., Visciglia, N.: Ground states for semi-relativistic Schrödinger-Poisson-Slater energy. Funk. Ekvacioj 60, 353–369 (2017)
3. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)
4. d’ Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations, Mathematical Models and Methods in Applied Sciences, 25(2015), 1447–1476
5. Frank, R. L., Lenzmann, E.: On ground states for the $$L^2$$-critical boson star equation, arXiv:0910.2721