On the distribution of the Picard ranks of the reductions of a K3 surface

Author:

Costa Edgar,Elsenhans Andreas-Stephan,Jahnel Jörg

Abstract

AbstractWe report on our results concerning the distribution of the geometric Picard ranks of K3 surfaces under reduction modulo various primes. In the situation that $${\mathop {{\mathrm{rk}}}\nolimits \mathop {{\mathrm{Pic}}}\nolimits S_{{\overline{K}}}}$$ rk Pic S K ¯ is even, we introduce a quadratic character, called the jump character, such that $${\mathop {{\mathrm{rk}}}\nolimits \mathop {{\mathrm{Pic}}}\nolimits S_{{\overline{{\mathbb {F}}}}_{\!{{\mathfrak {p}}}}} > \mathop {{\mathrm{rk}}}\nolimits \mathop {{\mathrm{Pic}}}\nolimits S_{{\overline{K}}}}$$ rk Pic S F ¯ p > rk Pic S K ¯ for all good primes at which the character evaluates to $$(-1)$$ ( - 1 ) .

Funder

Simons Foundation

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Reference50 articles.

1. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses 17. Société Mathématique de France, Paris (2004)

2. Ergebnisse der Mathematik und ihrer Grenzgebiete;W Barth,2004

3. Benoist, O.: Construction de courbes sur les surfaces K3 (d’aprés Bogomolov–Hassett–Tschinkel, Charles, Li-Liedtke, Madapusi Pera, Maulik $$\ldots $$). Astérisque 367–368, 219–253 (2015)

4. Berndt, B.C., Evans, R.J.: Sums of Gauss, Jacobi, and Jacobsthal. J. Number Theory 11, 349–398 (1979)

5. Bogomolov, F.A., Hassett, B., Tschinkel, Yu.: Constructing rational curves on $$K3$$ surfaces. Duke Math. J. 157, 535–550 (2011)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the component group of the algebraic monodromy group of a K3 surface;Journal of Algebra;2024-05

2. Curves on K3 surfaces;Duke Mathematical Journal;2022-11-01

3. 2-Adic point counting on K3 surfaces;Research in Number Theory;2022-10-10

4. Reduction of Brauer classes on K3 surfaces, rationality and derived equivalence;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3