Author:
Elsenhans Andreas-Stephan,Jahnel Jörg
Abstract
AbstractThis article reports on an approach to point counting on algebraic varieties over finite fields that is based on a detailed investigation of the 2-adic orthogonal group. Combining the new approach with a p-adic method, we count the number of points on some K3 surfaces over the field $$\mathbb {F}_{\!p}$$
F
p
, for all primes $$p < 10^8$$
p
<
10
8
.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference31 articles.
1. Artin, M.: Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. 7, 543–567 (1974)
2. Artin, M., Grothendieck, A. et Verdier, J.-L. (avec la collaboration de Deligne, P. et Saint-Donat, B.): Théorie des topos et cohomologie étale des schémas, Séminaire de Géométrie Algébrique du Bois Marie 1963–1964 (SGA 4), Lecture Notes in Math. 269, 270, 305, Springer, Berlin, Heidelberg, New York 1972–1973
3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)
4. Charles, F.: The Tate conjecture for K3 surfaces over finite fields. Invent. Math. 194, 119–145 (2013)
5. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, Third edition, Grundlehren der Mathematischen Wissenschaften 290. Springer, New York (1999)