Author:
Mossinghoff Michael J.,Trudgian Timothy S.,Yang Andrew
Abstract
AbstractWe prove that the Riemann zeta-function $$\zeta (\sigma + it)$$
ζ
(
σ
+
i
t
)
has no zeros in the region $$\sigma \ge 1 - 1/(55.241(\log |t|)^{2/3} (\log \log |t|)^{1/3})$$
σ
≥
1
-
1
/
(
55.241
(
log
|
t
|
)
2
/
3
(
log
log
|
t
|
)
1
/
3
)
for $$|t|\ge 3$$
|
t
|
≥
3
. In addition, we improve the constant in the classical zero-free region, showing that the zeta-function has no zeros in the region $$\sigma \ge 1 - 1/(5.558691\log |t|)$$
σ
≥
1
-
1
/
(
5.558691
log
|
t
|
)
for $$|t|\ge 2$$
|
t
|
≥
2
. We also provide new bounds that are useful for intermediate values of $$|t|$$
|
t
|
. Combined, our results improve the largest known zero-free region within the critical strip for $$3\cdot 10^{12} \le |t|\le \exp (64.1)$$
3
·
10
12
≤
|
t
|
≤
exp
(
64.1
)
and $$|t| \ge \exp (1000)$$
|
t
|
≥
exp
(
1000
)
.
Funder
Australian Research Council
University of New South Wales
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Bastien, G., Rogalski, M.: Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques. Can. J. Math. 54(5), 916–944 (2002)
2. Bennett, M.A., Martin, G., O’Bryant, K., Rechnitzer, A.: Explicit bounds for primes in arithmetic progressions. Ill. J. Math. 62(1–4), 427–532 (2018)
3. Broadbent, S., Kadiri, H., Lumley, A., Ng, N., Wilk, K.: Sharper bounds for the Chebyshev function $$\theta (x)$$. Math. Comput. 90(331), 2281–2315 (2021)
4. Cheng, Y.F., Graham, S.W.: Explicit estimates for the Riemann zeta function. Rocky Mt. J. Math. 34(4), 1261–1280 (2004)
5. Cully-Hugill, M.: Primes between consecutive powers. J. Number Theory 247, 100–117 (2023)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献