1. Alling, N. (1985). Conway’s field of surreal numbers. Transactions of the American Mathematical Society, 287(1), 365–386.
2. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., et al. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886–904. http://www.ams.org/notices/201307/rnoti-p886pdf , arxiv: 1306.5973 .
3. Bair, J., Błaszczyk, P., Ely, R., Henry, V.; Kanovei, V., Katz, K., et al. (2016). Interpreting the infinitesimal mathematics of Leibniz and Euler. Journal for general philosophy of science (to appear). doi: 10.1007/s10838-016-9334-z , arxiv:1605.00455
4. Barreau, H. (1989). Lazare Carnot et la conception leibnizienne de l’infini mathématique. In La mathématique non standard (pp. 43–82). Paris: Fondem. Sci. CNRS.
5. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., et al. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.