Fractional nonlinear energy sinks

Author:

Zhang Shengtao,Zhou Jiaxi,Ding Hu,Wang Kai,Xu Daolin

Abstract

AbstractThe cubic or third-power (TP) nonlinear energy sink (NES) has been proven to be an effective method for vibration suppression, owing to the occurrence of targeted energy transfer (TET). However, TET is unable to be triggered by the low initial energy input, and thus the TP NES would get failed under low-amplitude vibration. To resolve this issue, a new type of NES with fractional nonlinearity, e.g., one-third-power (OTP) nonlinearity, is proposed. The dynamic behaviors of a linear oscillator (LO) with an OTP NES are investigated numerically, and then both the TET feature and the vibration attenuation performance are evaluated. Moreover, an analogy circuit is established, and the circuit simulations are carried out to verify the design concept of the OTP NES. It is found that the threshold for TET of the OTP NES is two orders of magnitude smaller than that of the TP NES. The parametric analysis shows that a heavier mass or a lower stiffness coefficient of the NES is beneficial to the occurrence of TET in the OTP NES system. Additionally, significant energy transfer is usually accompanied with efficient energy dissipation. Consequently, the OTP NES can realize TET under low initial input energy, which should be a promising approach for micro-vibration suppression.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3