Plant disease detection using deep learning based Mobile application
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-14541-8.pdf
Reference33 articles.
1. Barbedo JGA, Koenigkan LV, Santos TT (2016) Identifying multiple plant diseases using digital image processing. Biosyst Eng 147:104–116
2. Chollet, F. (2017). Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1251–1258
3. Chouhan SS, Singh UP, Kaul A, Jain S (2019) A data repository of leaf images: practice towards plant conservation with plant pathology. In: 4th international conference on information systems and computer networks – ISCON’19. pp. 700–707
4. Cortes E (2017) Plant disease classification using convolutional networks and generative adverserial networks.
5. DeChant C, Wiesner-Hanks T, Chen S, Stewart EL, Yosinski J, Gore MA, Lipson H (2017) Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 107(11):1426–1432
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning-Based Barley Disease Quantification for Sustainable Crop Production;Phytopathology®;2024-09-13
2. Plant disease detection using leaf images and an involutional neural network;Environment Conservation Journal;2024-04-30
3. Plant disease detection using a depth-wise separable-based adaptive deep neural network;Multimedia Tools and Applications;2024-04-08
4. Potato Plant Disease Classification using Convolution Neural Network;2023 International Conference on Advanced Computing Technologies and Applications (ICACTA);2023-10-06
5. The Role of Federated Learning and CNNs in the Detection and Classification of Zucchini Leaf Diseases: A Severity-Based Analysis;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3