Two-stage multi-dimensional convolutional stacked autoencoder network model for hyperspectral images classification

Author:

Bai Yang,Sun Xiyan,Ji Yuanfa,Fu Wentao,Zhang Jinli

Abstract

AbstractDeep learning models have been widely used in hyperspectral images classification. However, the classification results are not satisfactory when the number of training samples is small. Focused on above-mentioned problem, a novel Two-stage Multi-dimensional Convolutional Stacked Autoencoder (TMC-SAE) model is proposed for hyperspectral images classification. The proposed model is composed of two sub-models SAE-1 and SAE-2. The SAE-1 is a 1D autoencoder with asymmetric structre based on full connection layers and 1D convolution layers to reduce spectral dimensionality. The SAE-2 is a hybrid autoencoder composed of 2D and 3D convolution operations to extract spectral-spatial features from the reduced dimensionality data by SAE-1. The SAE-1 is trained with raw data by unsupervised learning and the encoder of SAE-1 is employed to reduce spectral dimensionality of raw data. The data after dimension reduction is used to train the SAE-2 by unsupervised learning. The fine-tuning of SAE-2 encoder and the training of classifier are implemented simultaneously with small number of samples by supervised learning. Comparative experiments are performed on three widely used hyperspectral remote sensing data. The extensive comparative experiments demonstrate that the proposed architecture can effectively extract deep features and maintain high classification accuracy with small number of training samples.

Funder

Guangxi Key Laboratory of Precision Navigation Technology and Application

Natural Science Foundation of Guangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3