Breast cancer classification using snapshot ensemble deep learning model and t-distributed stochastic neighbor embedding
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-13419-5.pdf
Reference42 articles.
1. Abdar M, Makarenkov V (2019)CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement 146:557–570
2. Abdar M, Makarenkov V (2019)CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement. https://doi.org/10.1016/j.measurement.2019.05.022
3. Ahmad LG, Eshlaghy AT, Poorebrahimi A, Ebrahimi M, Razavi AR (2013) Using three machine learning techniques for predicting breast cancer recurrence. J Health Med Inform 4:124. https://doi.org/10.4172/2157-7420.1000124
4. Alam KMR, Siddique N, Adeli H (2020) A dynamic ensemble learning algorithm for neural networks. Neural Comput Appl 32(12):8675–8690. https://doi.org/10.1007/s00521-019-04359-7
5. Alam KM, Siddique N, Adeli H (2020) A dynamic ensemble learning algorithm for neural networks. Neural Comput Appl 8675–8690. https://doi.org/10.1007/s00521-019-04359-7
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning approaches to detect breast cancer: a comprehensive review;Multimedia Tools and Applications;2024-08-20
2. Pre-Examination of Breast Cancer Dataset Using Exploratory Data Analysis (EDA) Approach;2024 International Conference on Computational Intelligence and Computing Applications (ICCICA);2024-05-23
3. Machine Learning Based Assessment and Predictive Analysis of In-Vitro Fertilization Success Rate;EAI Endorsed Transactions on Pervasive Health and Technology;2024-03-22
4. Advances in Machine Learning Processing of Big Data from Disease Diagnosis Sensors;ACS Sensors;2024-02-16
5. Toward Improving Breast Cancer Classification Using an Adaptive Voting Ensemble Learning Algorithm;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3