Machine Learning Based Assessment and Predictive Analysis of In-Vitro Fertilization Success Rate

Author:

Mehta Vaishali,Mangla Monika,Sharma Nonita,Rakhra Manik,Choudhury Tanupriya,Rama Krishna Garigipati

Abstract

INTRODUCTION: The transformation in the lifestyle and other societal and economic factors during modern times have led to rise in the cases of infertility among young generation. Apart from these factors infertility may also be attributed to different medical conditions among both men and women. This rise in the cases of infertility is a matter of huge concern to the mankind and should be seriously pondered upon. However, the unprecedented advancements in the field of healthcare have led to In Vitro fertilization as a rescue to this devastating condition. Although the In Vitro fertilization has the potential to unfurl the happiness, it has associated challenges also in terms of physical and emotional health. Also, the success rate of In Vitro fertilization may vary from person to person. OBJECTIVES: To predict the success rate of In Vitro fertilization. METHODS: Machine Learning Models. RESULTS: It has been observed that Adaboost outperforms all other machine learning models by yielding an accuracy of 97.5%. CONCLUSION: During the result analysis, it is concluded that if age > 36, there is a negative propensity for clinical pregnancy and if age >40, the probability of a clinical pregnancy dramatically declines. Further, the propensity of clinical pregnancy is positively correlated to the count of embryos transferred in the same IVF cycle.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3