A Pre-processing framework for spectral classification of hyperspectral images
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-020-09180-2.pdf
Reference32 articles.
1. Aziz R, Verma CK, Srivastava N (2017) Dimension reduction methods for microarray data: a review. AIMS Bioeng 4(1):179–197
2. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491
3. Burger JE, Gowen AA (2011) The interplay of chemometrics and hyperspectral chemical imaging. In: 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). pp 1–4. IEEE
4. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process Magazine 31(1):45–54
5. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Selected Topics Appl Earth Observ Remote Sensing 7(6):2094–2107
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Constrained Spectral–Spatial Attention Residual Network and New Cross-Scene Dataset for Hyperspectral Classification;Electronics;2024-06-28
2. Deep learning techniques for hyperspectral image analysis in agriculture: A review;ISPRS Open Journal of Photogrammetry and Remote Sensing;2024-04
3. Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images;The Egyptian Journal of Remote Sensing and Space Sciences;2024-03
4. An End-to-End Framework for the Classification of Hyperspectral Images in the Wood Domain;IEEE Access;2024
5. Enhanced Hyperspectral Image Classification Through Pretrained CNN Model for Robust Spatial Feature Extraction;Journal of Optics;2023-11-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3