1. Agarwal S, Chand S (2018) Image forgery detection using co-occurrence-based texture operator in frequency domain. In: Progress in intelligent computing techniques: Theory, practice, and applications. Advances in intelligent systems and computing, vol 518. Springer, Singapore
2. Aizerman MA, Braverman EM, Rozoner LI (1964) Theoretical foundations of the potential function method in pattern recognition learning. Autom Remote Control 25:821–837
3. Dong J, Wang W, Tan T (2013) CASIA Image Tampering Detection Evaluation Database. IEEE China Summit and International Conference on Signal and Information Processing, pp 422–426. Available: http://forensics.idealtest.org/
4. Farid H (n.d.) Detecting digital forgeries using bispectral analysis. AI Lab, MIT Technical Report AIM-1999,1657
5. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Proc 4:172–179