A Novel Approach for Object Recognition Using Decision Tree Clustering by Incorporating Multi-Level BPNN Classifiers and Hybrid Texture Features

Author:

Kumar Upendra1ORCID

Affiliation:

1. Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, India

Abstract

This work proposes a novel approach to object recognition, particularly for human faces, based on the principle of human cognition. The suggested approach can handle a dataset or problem with a large number of classes for classification more effectively. The model for the facial recognition-based object detection system was constructed using a combination of decision tree clustering based multi-level Backpropagation neural network classifier-TFMLBPNN-DTC and hybrid texture feature (ILMFD+GLCM) and applied on NS and ORL databases. This model produced the classification accuracy (±standard deviation) of 95.37 ±0.951877% and 90.83 ± 1.374369% for single input and 96.58 ±0.5604582% and 91.50 ± 2.850439% for group-based decision for NS and ORL database respectively. The better classification results encourage its application to other object recognition and classification issues. This work's basic idea also makes it easier to improve classification management for a wide range of classes.

Publisher

IGI Global

Reference53 articles.

1. Fractal Coding-Based Robust and Alignment-Free Fingerprint Image Hashing

2. Aisbett, J., & Gibbon, G. (1999). Cognitive Classification. Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference innovative applications of artificial intelligence, Orlando, Florida, USA.

3. Texture features extraction based on GLCM for face retrieval system

4. Back Propagation Algorithm: The Best Algorithm among the Multi-layer Perceptron Algorithm;M.Alsmadi;IJCSNS International Journal of Computer Science and Network Security,2009

5. Introduction Neural networks in remote sensing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3