Semantic segmentation of brain tumor with nested residual attention networks
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-020-09840-3.pdf
Reference44 articles.
1. Abdel-Maksoud E, Elmogy M, Al-Awadi R (2015) Brain tumor segmentation based on a hybrid clustering technique. Egypt Inform J 16(1):71–81
2. Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 354–361
3. Chandra S, Vakalopoulou M, Fidon L, Battistella E, Estienne T, Sun R, Robert C, Deutsch E, Paragios N (2018) Context aware 3d cnns for brain tumor segmentation. In: International MICCAI brainlesion workshop. Springer, New York, pp 299–310
4. Chen X, Hao Liew J, Xiong W, Chui CK, Ong SH (2018) Focus, segment and erase: an efficient network for multi-label brain tumor segmentation. In: Proceedings of the european conference on computer vision (ECCV), pp 654–669
5. El-Melegy MT, Mokhtar HM (2014) Tumor segmentation in brain mri using a fuzzy approach with class center priors. EURASIP J Image Video Process 2014(1):21
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Target Driven Autoencoder: A Supervised Learning Approach for Tumor Segmentation;2024 International Conference on Emerging Systems and Intelligent Computing (ESIC);2024-02-09
2. Brain tumor segmentation and classification on MRI via deep hybrid representation learning;Expert Systems with Applications;2023-08
3. Comparison of residual and dense neural network approaches for building extraction from high-resolution aerial images;Advances in Space Research;2023-04
4. A Deep Learning Based Effective Model for Brain Tumor Segmentation and Classification Using MRI Images;Journal of Advances in Information Technology;2023
5. Exploiting semantic segmentation to boost reinforcement learning in video game environments;Multimedia Tools and Applications;2022-09-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3