Exploiting semantic segmentation to boost reinforcement learning in video game environments

Author:

Montalvo JavierORCID,García-Martín Álvaro,Bescós Jesús

Abstract

AbstractIn this work we explore enhancing performance of reinforcement learning algorithms in video game environments by feeding it better, more relevant data. For this purpose, we use semantic segmentation to transform the images that would be used as input for the reinforcement learning algorithm from their original domain to a simplified semantic domain with just silhouettes and class labels instead of textures and colors, and then we train the reinforcement learning algorithm with these simplified images. We have conducted different experiments to study multiple aspects: feasibility of our proposal, and potential benefits to model generalization and transfer learning. Experiments have been performed with the Super Mario Bros video game as the testing environment. Our results show multiple advantages for this method. First, it proves that using semantic segmentation enables reaching higher performance than the baseline reinforcement learning algorithm without modifying the actual algorithm, and in fewer episodes; second, it shows noticeable performance improvements when training on multiple levels at the same time; and finally, it allows to apply transfer learning for models trained on visually different environments. We conclude that using semantic segmentation can certainly help reinforcement learning algorithms that work with visual data, by refining it. Our results also suggest that other computer vision techniques may also be beneficial for data prepossessing. Models and code will be available on github upon acceptance.

Funder

Universidad Autónoma de Madrid

Ministerio de Economía, Industria y Competividad, Gobierno de España

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3