Adversarial deep learning for improved abdominal organ segmentation in CT scans
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11042-024-18578-1.pdf
Reference36 articles.
1. Murugesan GK, McCrumb D, Brunner E, Kumar J, Soni R, Grigorash V, Chang A, Peck A, VanOss J, Moore S (2023) Automatic abdominal multi organ segmentation using residual UNet. bioRxiv
2. Lei Y, Dong X, Tian S, Wang T, Patel PR, Curran WJ, Jani AB, Liu T, Yang X (2020) Multi-organ segmentation in pelvic CT images with CT-based synthetic MRI. Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging
3. Kim H, Jung J, Kim J, Cho B, Kwak J, Jang JY, Lee S, Lee J, Yoon SM (2019) Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network. Scientific Reports, 10
4. Lewis S, Inglis SD, Doyle S (2023) The role of anatomical context in soft-tissue multi-organ segmentation of cadaveric non-contrast enhanced whole body CT. Medical physics
5. Segre L, Hirschorn O, Ginzburg D, Raviv D (2022) Shape-consistent generative adversarial networks for multi-modal medical segmentation maps. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 1–5
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantitative Determination of Partial Voxel Compositions with X-ray CT Image-Based Data-Constrained Modelling;Applied Sciences;2024-08-22
2. Evaluating Generative Adversarial Networks for Virtual Contrast-Enhanced Kidney Segmentation using Res-UNet in Non-Contrast CT Images;Multimedia Tools and Applications;2024-07-19
3. Minimum error threshold segmentation method for SAR image based on Rayleigh distribution assumption;The Imaging Science Journal;2024-07-17
4. Preserving the Legacy of Ancient Tamil Script with Deep Learning and Fuzzy C Means Algorithm: Intelligent Approach to Digiitization;Journal of Electrical Engineering & Technology;2024-06-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3