Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network

Author:

Kim Hojin,Jung Jinhong,Kim Jieun,Cho Byungchul,Kwak Jungwon,Jang Jeong Yun,Lee Sang-wook,Lee June-Goo,Yoon Sang Min

Abstract

AbstractSegmentation of normal organs is a critical and time-consuming process in radiotherapy. Auto-segmentation of abdominal organs has been made possible by the advent of the convolutional neural network. We utilized the U-Net, a 3D-patch-based convolutional neural network, and added graph-cut algorithm-based post-processing. The inputs were 3D-patch-based CT images consisting of 64 × 64 × 64 voxels designed to produce 3D multi-label semantic images representing the liver, stomach, duodenum, and right/left kidneys. The datasets for training, validating, and testing consisted of 80, 20, and 20 CT simulation scans, respectively. For accuracy assessment, the predicted structures were compared with those produced from the atlas-based method and inter-observer segmentation using the Dice similarity coefficient, Hausdorff distance, and mean surface distance. The efficiency was quantified by measuring the time elapsed for segmentation with or without automation using the U-Net. The U-Net-based auto-segmentation outperformed the atlas-based auto-segmentation in all abdominal structures, and showed comparable results to the inter-observer segmentations especially for liver and kidney. The average segmentation time without automation was 22.6 minutes, which was reduced to 7.1 minutes with automation using the U-Net. Our proposed auto-segmentation framework using the 3D-patch-based U-Net for abdominal multi-organs demonstrated potential clinical usefulness in terms of accuracy and time-efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3