Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Reference139 articles.
1. Agarwal P, Alam M (2020) A lightweight deep learning model for human activity recognition on edge devices. Procedia Comput Sci 167(2019):2364–2373. https://doi.org/10.1016/j.procs.2020.03.289
2. Almaslukh B, Almuhtadi J, Artoli A (2017) An effective deep autoencoder approach for online smartphone-based human activity recognition. IJCSNS Int J Comput Sci Netw Secur 17(4):160–16 [Online]. Available: http://paper.ijcsns.org/07_book/201704/20170423.pdf
3. Almaslukh B, Artoli AM, Al-Muhtadi J (2018) A robust deep learning approach for position-independent smartphone-based human activity recognition, Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113726
4. Alshurafa N, Member S, Xu W, Liu JJ, Member S (2014) Designing a Robust Activity Recognition Framework for Health and Exergaming Using Wearable Sensors. 18(5):1636–1646
5. Analog Devices, “ADXL335 - Small, Low Power, 3-Axis ±3 g Accelerometer.” p. 16, 2010, [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL335.pdf
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献