A novel bearing fault diagnosis method using deep residual learning network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-11617-1.pdf
Reference39 articles.
1. Baraldi P, Cannarile F, Di Maio F, Zio E (2016) Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions. Eng Appl Artif Intell 56:1–13
2. Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press
3. Bjorck N, Gomes CP, Selman B, Weinberger KQ (2018) Understanding batch normalization. In: Adv Neural Inf Process Syst pp. 7694–7705
4. Chen XW, Lin X (2014) Big data deep learning: challenges and perspectives. IEEE Access 2:514–525
5. Chen Z, Mauricio A, Li W, Gryllias K (2020) A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech Syst Signal Process 140:106683
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Transfer learning for servomotor bearing fault detection in the industrial robot;Advances in Engineering Software;2024-08
2. A stable and robust fault diagnosis method for bearing using lightweight batch normalization-free residual network;Measurement Science and Technology;2024-07-15
3. A Novel Method for Rolling Bearing Fault Diagnosis Based on Gramian Angular Field and CNN-ViT;Sensors;2024-06-19
4. Intelligent Fault Diagnosis of Bearings Using a Flexible Residual Neural Network Tuned by Seagull Optimization Algorithm;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17
5. A novel subdomain adaptive intelligent fault diagnosis method based on multiscale adaptive residual networks;Measurement Science and Technology;2024-04-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3