A Novel Method for Rolling Bearing Fault Diagnosis Based on Gramian Angular Field and CNN-ViT

Author:

Zhou Zijun1,Ai Qingsong1ORCID,Lou Ping1ORCID,Hu Jianmin2,Yan Junwei1

Affiliation:

1. School of Information, Wuhan University of Technology, Wuhan 430070, China

2. School of Information Engineering, Hubei University of Economics, Wuhan 430205, China

Abstract

Fault diagnosis is one of the important applications of edge computing in the Industrial Internet of Things (IIoT). To address the issue that traditional fault diagnosis methods often struggle to effectively extract fault features, this paper proposes a novel rolling bearing fault diagnosis method that integrates Gramian Angular Field (GAF), Convolutional Neural Network (CNN), and Vision Transformer (ViT). First, GAF is used to convert one-dimensional vibration signals from sensors into two-dimensional images, effectively retaining the fault features of the vibration signal. Then, the CNN branch is used to extract the local features of the image, which are combined with the global features extracted by the ViT branch to diagnose the bearing fault. The effectiveness of this method is validated with two datasets. Experimental results show that the proposed method achieves average accuracies of 99.79% and 99.63% on the CWRU and XJTU-SY rolling bearing fault datasets, respectively. Compared with several widely used fault diagnosis methods, the proposed method achieves higher accuracy for different fault classifications, providing reliable technical support for performing complex fault diagnosis on edge devices.

Funder

National Key R&D Program of China

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3