Deep learning-based late fusion of multimodal information for emotion classification of music video

Author:

Pandeya Yagya Raj,Lee Joonwhoan

Abstract

AbstractAffective computing is an emerging area of research that aims to enable intelligent systems to recognize, feel, infer and interpret human emotions. The widely spread online and off-line music videos are one of the rich sources of human emotion analysis because it integrates the composer’s internal feeling through song lyrics, musical instruments performance and visual expression. In general, the metadata which music video customers to choose a product includes high-level semantics like emotion so that automatic emotion analysis might be necessary. In this research area, however, the lack of a labeled dataset is a major problem. Therefore, we first construct a balanced music video emotion dataset including diversity of territory, language, culture and musical instruments. We test this dataset over four unimodal and four multimodal convolutional neural networks (CNN) of music and video. First, we separately fine-tuned each pre-trained unimodal CNN and test the performance on unseen data. In addition, we train a 1-dimensional CNN-based music emotion classifier with raw waveform input. The comparative analysis of each unimodal classifier over various optimizers is made to find the best model that can be integrate into a multimodal structure. The best unimodal modality is integrated with corresponding music and video network features for multimodal classifier. The multimodal structure integrates whole music video features and makes final classification with the SoftMax classifier by a late feature fusion strategy. All possible multimodal structures are also combined into one predictive model to get the overall prediction. All the proposed multimodal structure uses cross-validation to overcome the data scarcity problem (overfitting) at the decision level. The evaluation results using various metrics show a boost in the performance of the multimodal architectures compared to each unimodal emotion classifier. The predictive model by integration of all multimodal structure achieves 88.56% in accuracy, 0.88 in f1-score, and 0.987 in area under the curve (AUC) score. The result suggests human high-level emotions are automatically well classified in the proposed CNN-based multimodal networks, even though a small amount of labeled data samples is available for training.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3