The course of birch pollen seasons in Sosnowiec (Southern Poland) in 1997–2020 in relation to meteorological conditions

Author:

Dąbrowska-Zapart KatarzynaORCID,Niedźwiedź TadeuszORCID

Abstract

AbstractThe study's main objective was to specify the extent to which weather conditions were related to the course of birch pollen seasons in the years 1997–2020. The impact of atmospheric conditions on the daily concentrations of birch pollen grains, the Annual pollen integral (APIn), and the length of pollen seasons were studied. The dependency between each meteorological condition and various features of the birch pollen season was determined using Spearman’s rho correlation, the Kruskal–Wallis test, and cluster analysis with the k-means method. It has been shown that the duration of sunshine and average air temperature occurring within 14 days preceding the season has the most significant influence on the beginning of a birch pollen season. The value of daily birch pollen concentrations in Sosnowiec showed a statistically significant positive correlation with the duration of sunlight and the average and maximum wind speed. The daily concentration also depended on the synoptic situation: the mass airflow direction, the type of air mass inflow, and the type of weather front. The near-ground temperature influenced the APIn of birch pollen grains during the period of 14 days before the beginning of the season and the meteorological conditions occurring in the summer of the preceding year such as the maximum temperature, duration of sunlight, the maximum and average wind speed, and the relative air humidity. It was concluded that the length of birch pollen seasons decreased year by year.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3