Impact of meteorological parameters and air pollutants on airborne concentration of Betula pollen and Bet v 1 allergen

Author:

Ščevková Jana,Dušička Jozef,Zahradníková Eva,Sepšiová Regina,Kováč Jozef,Vašková Zuzana

Abstract

AbstractThe intensity of birch pollen season is expressed by seasonal pollen integral (SPIn, the sum of the mean daily pollen concentration during the birch pollination period) and the amount of Bet v 1 allergen released per birch pollen grain expressed by pollen allergen potency (PAP). Betula pollen and Bet v 1 allergen were simultaneously measured in the air of Bratislava from 2019 to 2022 by using two Burkard traps (Hirst-type and cyclone) in order to evaluate the causes of the seasonal variation in the SPIn and PAP levels. The highest SPIn (19,975 pollen/m3) was observed in 2022 and the lowest one (1484 pollen/m3) in 2021. The average daily PAP level (4.0 pg Bet v 1/pollen) was highest in 2019 and lowest (2.5 pg Bet v 1/pollen) in 2020. We found that seasonal variation in SPIn was associated mainly with the changes in environmental conditions during the pre-season period, whereas the year-to-year variation in PAP levels was attributed to environmental conditions during both pre- and in-season periods. Our results indicate that rainy weather in June 2020 and cold overcast weather in January‒February 2021 resulted in low SPIn in 2021. On the other hand, dry weather in June 2021 and warm weather in January‒February 2022 resulted in high SPIn in 2022. The low average daily PAP level in 2020 was associated with (1) low levels of gaseous air pollutants in March, when the ripening of pollen takes place; (2) an earlier start of the birch main pollen season (MPS); and (3) dry weather during the MPS. On the other hand, high PAP level in 2019 was associated with higher levels of air pollutants in March and during the MPS.

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Comenius University in Bratislava

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3