A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

Author:

Gyamfi Enoch Opanin1,Qin Zhiguang1,Adu-Gyamfi Daniel2,Danso Juliana Mantebea1,Browne Judith Ayekai3,Adom Dominic Kwasi4,Botchey Francis Effirim1,Opoku-Mensah Nelson1

Affiliation:

1. School of Information and Software Engineering (SISE), University of Electronic Science and Technology of China, Sichuan Province, P.R. China.

2. Department of Cyber Security and Computer Engineering Technology (DCSCET), School of Computing and Information

3. School of Computer Science and Engineering (SCSE), University of Electronic Science and Technology of China (UESTC), Sichuan Province, P.R. China.

4. Department of Cyber Security and Computer Engineering Technology (DCSCET), School of Computing and Information Sciences (SCIS), C.K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana

Abstract

This study tackles the significant challenge of generating low-cost intrusion detection datasets for Internet of Things (IoT) camera devices, particularly for financially limited organizations. Traditional datasets often depend on costly cameras, posing accessibility issues. Addressing this, a new dataset was developed, tailored for low-cost IoT devices, focusing on essential features. The research employed an Entry/Exit IoT Network at CKT-UTAS, Navrongo, a Ghanaian University, showcasing a feasible model for similar organizations. The study gathered location and other vital features from low-cost cameras and a standard dataset. Using the XGBoost machine learning algorithm, the effectiveness of this approach for cybersecurity enhancement was demonstrated. The implementation included a model-agnostic eXplainable AI (XAI) technique, employing Shapley Additive Explanations (SHAP) values to interpret the XGBoost model's predictions. This highlighted the significance of cost-effective features like Flow Duration, Total Forward Packets, and Total Length Forward Packet, in addition to location data. These features were crucial for intrusion detection using the new IoT dataset. Training a deep-learning model with only these features maintained comparable accuracy to using the full dataset, validating the practicality and efficiency of the approach in real-world scenarios.

Funder

National Natural Science Foundation of China

Publisher

Naif Arab University for Security Sciences

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3